30/11/2020

Modular Graph Attention Network for Complex Visual Relational Reasoning

Yihan Zheng, Zhiquan Wen, Mingkui Tan, Runhao Zeng, Qi Chen, Yaowei Wang, Qi Wu

Keywords:

Abstract: Visual Relational Reasoning is crucial for many vision-and-language based tasks, such as Visual Question Answering and Vision Language Navigation. In this paper, we consider reasoning on complex referring expression comprehension (c-REF) task that seeks to localise the target objects in an image guided by complex queries. Such queries often contain complex logic and thus impose two key challenges for reasoning: (i) It can be very difficult to comprehend the query since it often refers to multiple objects and describes complex relationships among them. (ii) It is non-trivial to reason among multiple objects guided by the query and localise the target correctly. To address these challenges, we propose a novel Modular Graph Attention Network (MGA-Net). Specifically, to comprehend the long queries, we devise a language attention network to decompose them into four types: basic attributes, absolute location, visual relationship and relative locations, which mimics the human language understanding mechanism. Moreover, to capture the complex logic in a query, we construct a relational graph to represent the visual objects and their relationships, and propose a multi-step reasoning method to progressively understand the complex logic. Extensive experiments on CLEVR-Ref+, GQA and CLEVR-CoGenT datasets demonstrate the superior reasoning performance of our MGA-Net.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_201.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers