12/07/2020

Mapping natural-language problems to formal-language solutions using structured neural representations

Kezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul Smolensky, Ken Forbus, Jianfeng Gao

Keywords: Applications - Neuroscience, Cognitive Science, Biology and Health

Abstract: Generating formal-language programs represented by relational tuples, such as Lisp programs or mathematical operations, from natural-language problems is a challenging task because it requires explicitly capturing discrete symbolic structural information implicit in the input. However, most general neural sequence models do not explicitly capture such structural information, limiting their performance on these tasks. In this paper, we propose a new encoder-decoder model based on a structured neural representation, Tensor Product Representations (TPRs), for generating formal-language solutions from natural-language, called TP-N2F. The encoder of TP-N2F employs TPR `binding' to encode natural-language symbolic structure in vector space and the decoder uses TPR `unbinding' to generate, in symbolic space, a sequential program represented by relational tuples, each consisting of a relation (or operation) and a number of arguments. TP-N2F considerably outperforms LSTM-based seq2seq models on two benchmarks and creates new state-of-the-art results. Ablation studies show that improvements can be attributed to the use of structured TPRs explicitly in both the encoder and decoder. Analysis of the learned structures shows how TPRs enhance the interpretability of TP-N2F.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers