02/02/2021

Unified Tensor Framework for Incomplete Multi-view Clustering and Missing-view Inferring

Jie Wen, Zheng Zhang, Zhao Zhang, Lei Zhu, Lunke Fei, Bob Zhang, Yong Xu

Keywords:

Abstract: In this paper, we propose a novel method, referred to as incomplete multi-view tensor spectral clustering with missing-view inferring (IMVTSC-MVI) to address the challenging multi-view clustering problem with missing views. Different from the existing methods which commonly focus on exploring the certain information of the available views while ignoring both of the hidden information of the missing views and the intra-view information of data, IMVTSC-MVI seeks to recover the missing views and explore the full information of such recovered views and available views for data clustering. In particular, IMVTSC-MVI incorporates the feature space based missing-view inferring and manifold space based similarity graph learning into a unified framework. In such a way, IMVTSC-MVI allows these two learning tasks to facilitate each other and can well explore the hidden information of the missing views. Moreover, IMVTSC-MVI introduces the low-rank tensor constraint to capture the high-order correlations of multiple views. Experimental results on several datasets demonstrate the effectiveness of IMVTSC-MVI for incomplete multi-view clustering.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947998
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers