Building powerful and equivariant graph neural networks with structural message-passing

Clément Vignac, Andreas Loukas, Pascal Frossard

Keywords: Algorithms -> Similarity and Distance Learning, Theory -> Information Theory

Abstract: Message-passing has proved to be an effective way to design graph neural networks, as it is able to leverage both permutation equivariance and an inductive bias towards learning local structures in order to achieve good generalization. However, current message-passing architectures have a limited representation power and fail to learn basic topological properties of graphs. We address this problem and propose a powerful and equivariant message-passing framework based on two ideas: first, we propagate a one-hot encoding of the nodes, in addition to the features, in order to learn a local context matrix around each node. This matrix contains rich local information about both features and topology and can eventually be pooled to build node representations. Second, we propose methods for the parametrization of the message and update functions that ensure permutation equivariance. Having a representation that is independent of the specific choice of the one-hot encoding permits inductive reasoning and leads to better generalization properties. Experimentally, our model can predict various graph topological properties on synthetic data more accurately than previous methods and achieves state-of-the-art results on molecular graph regression on the ZINC dataset.

This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.


Post Comment
no comments yet
code of conduct: tbd

Similar Papers