02/02/2021

Multi-View Information-Bottleneck Representation Learning

Zhibin Wan, Changqing Zhang, Pengfei Zhu, Qinghua Hu

Keywords:

Abstract: In real-world applications, clustering or classification can usually be improved by fusing information from different views. Therefore, unsupervised representation learning on multi-view data becomes a compelling topic in machine learning. In this paper, we propose a novel and flexible unsupervised multi-view representation learning model termed Collaborative Multi-View Information Bottleneck Networks (CMIB-Nets), which comprehensively explores the common latent structure and the view-specific intrinsic information, and discards the superfluous information in the data significantly improving the generalization capability of the model. Specifically, our proposed model relies on the information bottleneck principle to integrate the shared representation among different views and the view-specific representation of each view, prompting the multi-view complete representation and flexibly balancing the complementarity and consistency among multiple views. We conduct extensive experiments (including clustering analysis, robustness experiment, and ablation study) on real-world datasets, which empirically show promising generalization ability and robustness compared to state-of-the-arts.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948404
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers