14/09/2020

Neural Cross-Domain Collaborative Filtering with Shared Entities

Vijaikumar M, Shirish Shevade, Narasimha Murty

Keywords: cross-domain collaborative filtering, deep learning, neural networks, wide and deep framework, recommendation system

Abstract: Cross-Domain Collaborative Filtering (CDCF) provides a way to alleviate data sparsity and cold-start problems present in recommendation systems by exploiting the knowledge from related domains. Existing CDCF models are either based on matrix factorization or deep neural networks. Independent use of either of the techniques in isolation may result in suboptimal performance for the prediction task. Also, most of the existing models face challenges particularly in handling diversity between domains and learning complex non-linear relationships that exist amongst entities (users/items) within and across domains. In this work, we propose an end-to-end neural network model – NeuCDCF, to address these challenges in a cross-domain setting. More importantly, NeuCDCF is based on a wide and deep framework and learns the representations jointly using both matrix factorization and deep neural networks. We perform experiments on four real-world datasets and demonstrate that our model performs better than state-of-the-art CDCF models.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers