07/09/2020

Adaptation Across Extreme Variations using Unlabeled Bridges

Shuyang Dai, Kihyuk Sohn, Yi-Hsuan Tsai, Lawrence Carin Duke, Manmohan Chandraker

Keywords: domain adaptation, image recognition, deep learning

Abstract: We tackle an unsupervised domain adaptation problem for which the domain discrepancy between labeled source and unlabeled target domains is large, due to many factors of inter- and intra-domain variation. While deep domain adaptation methods have been realized by reducing the domain discrepancy, these are difficult to apply when domains are significantly different. We propose to decompose domain discrepancy into multiple but smaller, and thus easier to minimize, discrepancies by introducing unlabeled bridging domains that connect the source and target domains. We realize our proposed approach through an extension of the domain adversarial neural network with multiple discriminators, each of which accounts for reducing discrepancies between unlabeled (bridge, target) domains and a mix of all precedent domains including source. We validate the effectiveness of our method on several adaptation tasks including object recognition and semantic segmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers