03/05/2021

Conditional Generative Modeling via Learning the Latent Space

Sameera Ramasinghe, Kanchana Ranasinghe, Salman Khan, Nick Barnes, Stephen Gould

Keywords: Generative Modeling, Conditional Generation, Multimodal Spaces

Abstract: Although deep learning has achieved appealing results on several machine learning tasks, most of the models are deterministic at inference, limiting their application to single-modal settings. We propose a novel general-purpose framework for conditional generation in multimodal spaces, that uses latent variables to model generalizable learning patterns while minimizing a family of regression cost functions. At inference, the latent variables are optimized to find solutions corresponding to multiple output modes. Compared to existing generative solutions, our approach demonstrates faster and more stable convergence, and can learn better representations for downstream tasks. Importantly, it provides a simple generic model that can perform better than highly engineered pipelines tailored using domain expertise on a variety of tasks, while generating diverse outputs. Code available at https://github.com/samgregoost/cGML.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers