26/04/2020

Domain Adaptive Multibranch Networks

Róger Bermúdez-Chacón, Mathieu Salzmann, Pascal Fua

Keywords: Domain Adaptation, Computer Vision

Abstract: We tackle unsupervised domain adaptation by accounting for the fact that different domains may need to be processed differently to arrive to a common feature representation effective for recognition. To this end, we introduce a deep learning framework where each domain undergoes a different sequence of operations, allowing some, possibly more complex, domains to go through more computations than others. This contrasts with state-of-the-art domain adaptation techniques that force all domains to be processed with the same series of operations, even when using multi-stream architectures whose parameters are not shared. As evidenced by our experiments, the greater flexibility of our method translates to higher accuracy. Furthermore, it allows us to handle any number of domains simultaneously.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers