30/11/2020

Regularizing Meta-Learning via Gradient Dropout

Hung-Yu Tseng, Yi-Wen Chen, Yi-Hsuan Tsai, Sifei Liu, Yen-Yu Lin, Ming-Hsuan Yang

Keywords:

Abstract: With the growing attention on learning-to-learn new tasks using only a few examples, meta-learning has been widely used in numerous problems such as few-shot classification, reinforcement learning, and domain generalization. However, meta-learning models are prone to overfitting when there are no sufficient training tasks for the meta-learners to generalize. Although existing approaches such as Dropout are widely used to address the overfitting problem, these methods are typically designed for regularizing models of a single task in supervised training.In this paper, we introduce a simple yet effective method to alleviate the risk of overfitting for gradient-based meta-learning. Specifically, during the gradient-based adaptation stage, we randomly drop the gradient in the inner-loop optimization of each parameter in deep neural networks, such that the augmented gradients improve generalization to new tasks. We present a general form of the proposed gradient dropout regularization and show that this term can be sampled from either the Bernoulli or Gaussian distribution. To validate the proposed method, we conduct extensive experiments and analysis on numerous computer vision tasks, demonstrating that the gradient dropout regularization mitigates the overfitting problem and improves the performance upon various gradient-based meta-learning frameworks.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_565.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers