04/07/2020

Autoencoding Keyword Correlation Graph for Document Clustering

Billy Chiu, Sunil Kumar Sahu, Derek Thomas, Neha Sengupta, Mohammady Mahdy

Keywords: Document Clustering, inducing classes, clustering, Autoencoding Graph

Abstract: Document clustering requires a deep understanding of the complex structure of long-text; in particular, the intra-sentential (local) and inter-sentential features (global). Existing representation learning models do not fully capture these features. To address this, we present a novel graph-based representation for document clustering that builds a graph autoencoder (GAE) on a Keyword Correlation Graph. The graph is constructed with topical keywords as nodes and multiple local and global features as edges. A GAE is employed to aggregate the two sets of features by learning a latent representation which can jointly reconstruct them. Clustering is then performed on the learned representations, using vector dimensions as features for inducing document classes. Extensive experiments on two datasets show that the features learned by our approach can achieve better clustering performance than other existing features, including term frequency-inverse document frequency and average embedding.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers