25/07/2020

Web table retrieval using multimodal deep learning

Roee Shraga, Haggai Roitman, Guy Feigenblat, Mustafa Cannim

Keywords: experimentation, multimodal deep-learning, table retrieval

Abstract: We address the web table retrieval task, aiming to retrieve and rank web tables as whole answers to a given information need. To this end, we formally define web tables as multimodal objects. We then suggest a neural ranking model, termed MTR, which makes a novel use of Gated Multimodal Units (GMUs) to learn a joint-representation of the query and the different table modalities. We further enhance this model with a co-learning approach which utilizes automatically learned query-independent and query-dependent "helper” labels. We evaluate the proposed solution using both ad hoc queries (WikiTables) and natural language questions (GNQtables). Overall, we demonstrate that our approach surpasses the performance of previously studied state-of-the-art baselines.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401120#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers