02/02/2021

Proposal-Free Video Grounding with Contextual Pyramid Network

Kun Li, Dan Guo, Meng Wang

Keywords:

Abstract: The challenge of video grounding - localizing activities in an untrimmed video via a natural language query - is to tackle the semantics of vision and language consistently along the temporal dimension. Most existing proposal-based methods are trapped by computational cost with extensive candidate proposals. In this paper, we propose a novel proposal-free framework named Contextual Pyramid Network (CPNet) to investigate multi-scale temporal correlation in the video. Specifically, we propose a pyramid network to extract 2D contextual correlation maps at different temporal scales (T*T, T/2*T/2, T/4*T/4), where the 2D correlation map (past to current & future to current) is designed to model all the relations of any two moments in the video. In other words, CPNet progressively replenishes the temporal contexts and refines the location of queried activity by enlarging the temporal receptive fields. Finally, we implement a temporal self-attentive regression (i.e., proposal-free regression) to predict the activity boundary from the above hierarchical context-aware 2D correlation maps. Extensive experiments on ActivityNet Captions, Charades-STA, and TACoS datasets demonstrate that our approach outperforms state-of-the-art methods.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949114
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers