05/01/2021

Saliency Driven Perceptual Image Compression

Yash Patel, Srikar Appalaraju, R. Manmatha

Keywords:

Abstract: This paper proposes a new end-to-end trainable model for lossy image compression, which includes several novel components. The method incorporates 1) an adequate perceptual similarity metric; 2) saliency in the images; 3) a hierarchical auto-regressive model. This paper demonstrates that the popularly used evaluations metrics such as MS-SSIM and PSNR are inadequate for judging the performance of image compression techniques as they do not align with the human perception of similarity. Alternatively, a new metric is proposed, which is learned on perceptual similarity data specific to image compression. The proposed compression model incorporates the salient regions and optimizes on the proposed perceptual similarity metric. The model not only generates images which are visually better but also gives superior performance for subsequent computer vision tasks such as object detection and segmentation when compared to existing engineered or learned compression techniques.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers