05/01/2021

Long-Range Attention Network for Multi-View Stereo

Xudong Zhang, Yutao Hu, Haochen Wang, Xianbin Cao, Baochang Zhang

Keywords:

Abstract: Learning-based multi-view stereo (MVS) has recently gained great popularity, which can efficiently infer depth map and reconstruct fine-grained scene geometry. Previous methods calculate the variance of the corresponding pixel pairs to determine whether they are matched mostly based on the pixel-wise measure, which fails to consider the interdependence among pixels and is ineffective on the matching of texture-less or occluded regions. These false matching problems challenge MVS and result in its most failure cases. To address the issues, we introduce a Long-range Attention Network (LANet) to selectively aggregate reference features to each position to capture the long-range interdependence across the entire space. As a result, similar features relate to each other regardless of their distance, propagating more guiding information for the effective match. Furthermore, we introduce a new loss to supervise the intermediate probability volume by constraining its distribution reasonably centered at the true depth. Extensive experiments on large-scale DTU dataset demonstrate that the proposed LANet achieves the new state-of-the-art performance, outperforming previous methods by a large margin. Our method is generic and also achieves comparable results on outdoor Tanks and Temples dataset without any fine-tuning, which validates our method's generalization ability.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers