14/06/2020

Learning Fused Pixel and Feature-Based View Reconstructions for Light Fields

Jinglei Shi, Xiaoran Jiang, Christine Guillemot

Keywords: light field, view synthesis, feature-based reconstruction, pixel-based reconstruction, deep learning, angular super-resolution

Abstract: In this paper, we present a learning-based framework for light field view synthesis from a subset of input views. Building upon a light-weight optical flow estimation network to obtain depth maps, our method employs two reconstruction modules in pixel and feature domains respectively. For the pixel-wise reconstruction, occlusions are explicitly handled by a disparity-dependent interpolation filter, whereas inpainting on disoccluded areas is learned by convolutional layers. Due to disparity inconsistencies, the pixel-based reconstruction may lead to blurriness in highly textured areas as well as on object contours. On the contrary, the feature-based reconstruction well performs on high frequencies, making the reconstruction in the two domains complementary. End-to-end learning is finally performed including a fusion module merging pixel and feature-based reconstructions. Experimental results show that our method achieves state-of-the-art performance on both synthetic and real-world datasets, moreover, it is even able to extend light fields' baseline by extrapolating high quality views without additional training.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers