02/02/2021

Learned Bi-Resolution Image Coding using Generalized Octave Convolutions

Mohammad Akbari, Jie Liang, Jingning Han, Chengjie Tu

Keywords:

Abstract: Learned image compression has recently shown the potential to outperform the standard codecs. State-of-the-art rate-distortion (R-D) performance has been achieved by context-adaptive entropy coding approaches in which hyperprior and autoregressive models are jointly utilized to effectively capture the spatial dependencies in the latent representations. However, the latents are feature maps of the same spatial resolution in previous works, which contain some redundancies that affect the R-D performance. In this paper, we propose a learned bi-resolution image coding approach that is based on the recently developed octave convolutions to factorize the latents into high and low resolution components. Therefore, the spatial redundancy is reduced, which improves the R-D performance. Novel generalized octave convolution and octave transposed-convolution architectures with internal activation layers are also proposed to preserve more spatial structure of the information. Experimental results show that the proposed scheme outperforms all existing learned methods as well as standard codecs such as the next-generation video coding standard VVC (4:2:0) in both PSNR and MS-SSIM. We also show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based schemes such as semantic segmentation and image denoising.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948228
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers