Abstract:
Evaluating image captions is very challenging partially due to the fact that there are multiple correct captions for every single image. Most of the existing one-to-one metrics operate by penalizing mismatches between reference and generative caption without considering the intrinsic variance between ground truth captions. It usually leads to over-penalization and thus a bad correlation to human judgment. Recently, the latest one-to-one metric BERTScore can achieve high human correlation in system-level tasks while some issues can be fixed for better performance. In this paper, we propose a novel metric based on BERTScore that could handle such a challenge and extend BERTScore with a few new features appropriately for image captioning evaluation. The experimental results show that our metric achieves state-of-the-art human judgment correlation.