16/11/2020

Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie Lyu, Tuo Zhao, Chao Zhang

Keywords: augmented training, in-distribution calibration, text classification, expectation error

Abstract: Fine-tuned pre-trained language models can suffer from severe miscalibration for both in-distribution and out-of-distribution (OOD) data due to over-parameterization. To mitigate this issue, we propose a regularized fine-tuning method. Our method introduces two types of regularization for better calibration: (1) On-manifold regularization, which generates pseudo on-manifold samples through interpolation within the data manifold. Augmented training with these pseudo samples imposes a smoothness regularization to improve in-distribution calibration. (2) Off-manifold regularization, which encourages the model to output uniform distributions for pseudo off-manifold samples to address the over-confidence issue for OOD data. Our experiments demonstrate that the proposed method outperforms existing calibration methods for text classification in terms of expectation calibration error, misclassification detection, and OOD detection on six datasets. Our code can be found at https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers