18/07/2021

Robust Representation Learning via Perceptual Similarity Metrics

Saeid A Taghanaki, Kristy Choi, Amir Hosein Khasahmadi, Anirudh Goyal

Keywords: Deep Learning, Embedding and Representation learning

Abstract: A fundamental challenge in artificial intelligence is learning useful representations of data that yield good performance on a downstream classification task, without overfitting to spurious input features. Extracting such task-relevant predictive information becomes particularly difficult for noisy and high-dimensional real-world data. In this work, we propose Contrastive Input Morphing (CIM), a representation learning framework that learns input-space transformations of the data to mitigate the effect of irrelevant input features on downstream performance. Our method leverages a perceptual similarity metric via a triplet loss to ensure that the transformation preserves task-relevant information. Empirically, we demonstrate the efficacy of our approach on various tasks which typically suffer from the presence of spurious correlations: classification with nuisance information, out-of-distribution generalization, and preservation of subgroup accuracies. We additionally show that CIM is complementary to other mutual information-based representation learning techniques, and demonstrate that it improves the performance of variational information bottleneck (VIB) when used in conjunction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers