14/06/2020

Don’t Judge an Object by Its Context: Learning to Overcome Contextual Bias

Krishna Kumar Singh, Dhruv Mahajan, Kristen Grauman, Yong Jae Lee, Matt Feiszli, Deepti Ghadiyaram

Keywords: co-occurring bias, out-of-context, image classification, data imbalance, feature decorrelation

Abstract: Existing models often leverage co-occurrences between objects and their context to improve recognition accuracy. However, strongly relying on context risks a model's generalizability, especially when typical co-occurrence patterns are absent. This work focuses on addressing such contextual biases to improve the robustness of the learnt feature representations. Our goal is to accurately recognize a category in the absence of its context, without compromising on performance when it co-occurs with context. Our key idea is to decorrelate feature representations of a category from its co-occurring context. We achieve this by learning a feature subspace that explicitly represents categories occurring in the absence of context along side a joint feature subspace that represents both categories and context. Our very simple yet effective method is extensible to two multi-label tasks -- object and attribute classification. On 4 challenging datasets, we demonstrate the effectiveness of our method in reducing contextual bias.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers