14/06/2020

Probabilistic Structural Latent Representation for Unsupervised Embedding

Mang Ye, Jianbing Shen

Keywords: unsupervised embedding learning, latent representation, instance feature, adaptable softmax

Abstract: Unsupervised embedding learning aims at extracting low-dimensional visually meaningful representations from large-scale unlabeled images, which can then be directly used for similarity-based search. This task faces two major challenges: 1) mining positive supervision from highly similar fine-grained classes and 2) generating to unseen testing categories. To tackle these issues, this paper proposes a probabilistic structural latent representation (PSLR), which incorporates an adaptable softmax embedding to approximate the positive concentrated and negative instance separated properties in the graph latent space. It improves the discriminability by enlarging the positive/negative difference without introducing any additional computational cost while maintaining high learning efficiency. To address the limited supervision using data augmentation, a smooth variational reconstruction loss is introduced by modeling the intra-instance variance, which improves the robustness. Extensive experiments demonstrate the superiority of PSLR over state-of-the-art unsupervised methods on both seen and unseen categories with cosine similarity. Code is available at \url{https://github.com/mangye16/PSLR}

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers