08/07/2020

New Extremal bounds for Reachability and Strong-Connectivity Preservers under failures

Diptarka Chakraborty and Keerti Choudhary

Keywords: Preservers, Strong-connectivity, Reachability, Fault-tolerant, Graph sparsification

Abstract: In this paper, we consider the question of computing sparse subgraphs for any input directed graph G = (V,E) on n vertices and m edges, that preserves reachability and/or strong connectivity structures. - We show O(n+min{|P|√n, n√|P|}) bound on a subgraph that is an 1-fault-tolerant reachability preserver for a given vertex-pair set P ⊆ V× V, i.e., it preserves reachability between any pair of vertices in P under single edge (or vertex) failure. Our result is a significant improvement over the previous best O(n |P|) bound obtained as a corollary of single-source reachability preserver construction. We prove our upper bound by exploiting the special structure of single fault-tolerant reachability preserver for any pair, and then considering the interaction among such structures for different pairs. - In the lower bound side, we show that a 2-fault-tolerant reachability preserver for a vertex-pair set P ⊆ V×V of size Ω(n^ε), for even any arbitrarily small ε, requires at least Ω(n^(1+ε/8)) edges. This refutes the existence of linear-sized dual fault-tolerant preservers for reachability for any polynomial sized vertex-pair set. - We also present the first sub-quadratic bound of at most Õ(k 2^k n^(2-1/k)) size, for strong-connectivity preservers of directed graphs under k failures. To the best of our knowledge no non-trivial bound for this problem was known before, for a general k. We get our result by adopting the color-coding technique of Alon, Yuster, and Zwick [JACM'95].

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 12:14