08/07/2020

Simplifying and Unifying Replacement Paths Algorithms in Weighted Directed Graphs

Shiri Chechik & Moran Nechushtan

Keywords: Fault tolerance, Distance oracle, Planar graph

Abstract: In the replacement paths (RP) problem we are given a graph G and a shortest path P between two nodes s and t . The goal is to find for every edge e ∈ P, a shortest path from s to t that avoids e. The first result of this paper is a simple reduction from the RP problem to the problem of computing shortest cycles for all nodes on a shortest path. Using this simple reduction we unify and extremely simplify two state of the art solutions for two different well-studied variants of the RP problem. In the first variant (algebraic) we show that by using at most n queries to the Yuster-Zwick distance oracle [FOCS 2005], one can solve the the RP problem for a given directed graph with integer edge weights in the range [-M,M] in Õ(M n^ω) time . This improves the running time of the state of the art algorithm of Vassilevska Williams [SODA 2011] by a factor of log⁶n. In the second variant (planar) we show that by using the algorithm of Klein for the multiple-source shortest paths problem (MSSP) [SODA 2005] one can solve the RP problem for directed planar graph with non negative edge weights in O (n log n) time. This matches the state of the art algorithm of Wulff-Nilsen [SODA 2010], but with arguably much simpler algorithm and analysis.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers