08/07/2020

Spectral Sparsification via Bounded-Independence Sampling

Dean Doron, Jack Murtagh, Salil Vadhan and David Zuckerman

Keywords: Spectral sparsification, Derandomization, Space complexity

Abstract: We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary string of length N, an integer k ≤ log n and an error parameter ε > 0, our algorithm runs in space Õ(k log(N w_max/w_min)) where w_max and w_min are the maximum and minimum edge weights in G, and produces a weighted graph H with Õ(n^(1+2/k)/ε²) edges that spectrally approximates G, in the sense of Spielmen and Teng [Spielman and Teng, 2004], up to an error of ε. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s effective resistance based edge sampling algorithm [Spielman and Srivastava, 2011] and uses results from recent work on space-bounded Laplacian solvers [Jack Murtagh et al., 2017]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by k above, and the resulting sparsity that can be achieved.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers