09/07/2020

Consistent recovery threshold of hidden nearest neighbor graphs

Jian Ding, Yihong Wu, Jiaming Xu, Dana Yang

Keywords: Learning from complex/structured data (e.g. networks, time series), Information theory, Learning with algebraic or combinatorial structure

Abstract: Motivated by applications such as discovering strong ties in social networks and assembling genome subsequences in biology, we study the problem of recovering a hidden $2k$-nearest neighbor (NN) graph in an $n$-vertex complete graph, whose edge weights are independent and distributed according to $P_n$ for edges in the hidden $2k$-NN graph and $Q_n$ otherwise. The special case of Bernoulli distributions corresponds to a variant of the Watts-Strogatz small-world graph. We focus on two types of asymptotic recovery guarantees as $n\to \infty$ (1) exact recovery: all edges are classified correctly with probability tending to one; (2) almost exact recovery: the expected number of misclassified edges is $o(nk)$. We show that the maximum likelihood estimator achieves (1) exact recovery for $2 \le k \le n^{o(1)}$ if $ \liminf \frac{2\alpha_n}{\log n}>1$; (2) almost exact recovery for $ 1 \le k \le o\left( \frac{\log n}{\log \log n} \right)$ if $\liminf\frac{kD(P_n||Q_n)}{\log n}>1$, where $\alpha_n \triangleq -2 \log \int \sqrt{d P_n d Q_n}$ is the R\'enyi divergence of order $\frac{1}{2}$ and $D(P_n||Q_n)$ is the Kullback-Leibler divergence. Under mild distributional assumptions, these conditions are shown to be information-theoretically necessary for any algorithm to succeed. A key challenge in the analysis is the enumeration of $2k$-NN graphs that differ from the hidden one by a given number of edges. We also analyze several computationally efficient algorithms and provide sufficient conditions under which they achieve exact/almost exact recovery. In particular, we develop a polynomial-time algorithm that attains the threshold for exact recovery under the small-world model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers