22/06/2020

Polylogarithmic-time deterministic network decomposition and distributed derandomization

Václav Rozhoň, Mohsen Ghaffari

Keywords: network decomposition, distributed algorithms, derandomization

Abstract: We present a simple polylogarithmic-time deterministic distributed algorithm for network decomposition. This improves on a celebrated 2O(√logn)-time algorithm of Panconesi and Srinivasan [STOC’92] and settles a central and long-standing question in distributed graph algorithms. It also leads to the first polylogarithmic-time deterministic distributed algorithms for numerous other problems, hence resolving several well-known and decades-old open problems, including Linial’s question about the deterministic complexity of maximal independent set [FOCS’87; SICOMP’92]—which had been called the most outstanding problem in the area. The main implication is a more general distributed derandomization theorem: Put together with the results of Ghaffari, Kuhn, and Maus [STOC’17] and Ghaffari, Harris, and Kuhn [FOCS’18], our network decomposition implies that P-RLOCAL = P-LOCAL. That is, for any problem whose solution can be checked deterministically in polylogarithmic-time, any polylogarithmic-time randomized algorithm can be derandomized to a polylogarithmic-time deterministic algorithm. Informally, for the standard first-order interpretation of efficiency as polylogarithmic-time, distributed algorithms do not need randomness for efficiency. By known connections, our result leads also to substantially faster randomized distributed algorithms for a number of well-studied problems including (Δ+1)-coloring, maximal independent set, and Lovász Local Lemma, as well as massively parallel algorithms for (Δ+1)-coloring.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers