22/06/2020

Rounding dynamic matchings against an adaptive adversary

David Wajc

Keywords: Adaptive Adversary, Dynamic Algorithms, Dynamic Matching, Matching Sparsifier

Abstract: We present a new dynamic matching sparsification scheme. From this scheme we derive a framework for dynamically rounding fractional matchings against adaptive adversaries. Plugging in known dynamic fractional matching algorithms into our framework, we obtain numerous randomized dynamic matching algorithms which work against adaptive adversaries. In contrast, all previous randomized algorithms for this problem assumed a weaker, oblivious, adversary. Our dynamic algorithms against adaptive adversaries include, for any constant є >0, a (2+є)-approximate algorithm with constant update time or polylog worst-case update time, as well as (2−δ)-approximate algorithms in bipartite graphs with arbitrarily-small polynomial update time. All these results achieve polynomially better update time to approximation trade-offs than previously known to be achievable against adaptive adversaries.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers