08/07/2020

Improved Bounds for Matching in Random-Order Streams

Aaron Bernstein

Keywords: Graph Algorithms, Sublinear Algorithms, Matching, Streaming

Abstract: We study the problem of computing an approximate maximum cardinality matching in the semi-streaming model when edges arrive in a random order. In the semi-streaming model, the edges of the input graph G = (V,E) are given as a stream e₁, …, e_m, and the algorithm is allowed to make a single pass over this stream while using O(n polylog(n)) space (m = |E| and n = |V|). If the order of edges is adversarial, a simple single-pass greedy algorithm yields a 1/2-approximation in O(n) space; achieving a better approximation in adversarial streams remains an elusive open question. A line of recent work shows that one can improve upon the 1/2-approximation if the edges of the stream arrive in a random order. The state of the art for this model is two-fold: Assadi et al. [SODA 2019] show how to compute a 2/3(∼.66)-approximate matching, but the space requirement is O(n^1.5 polylog(n)). Very recently, Farhadi et al. [SODA 2020] presented an algorithm with the desired space usage of O(n polylog(n)), but a worse approximation ratio of 6/11(∼.545), or 3/5(=.6) in bipartite graphs. In this paper, we present an algorithm that computes a 2/3(∼.66)-approximate matching using only O(n log(n)) space, improving upon both results above. We also note that for adversarial streams, a lower bound of Kapralov [SODA 2013] shows that any algorithm that achieves a 1-1/e(∼.63)-approximation requires (n^{1+Ω(1/log log(n))}) space. Our result for random-order streams is the first to go beyond the adversarial-order lower bound, thus establishing that computing a maximum matching is provably easier in random-order streams.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers