12/07/2020

Spectral Graph Matching and Regularized Quadratic Relaxations: Algorithm and Theory

Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu

Keywords: Probabilistic Inference - Approximate, Monte Carlo, and Spectral Methods

Abstract: Graph matching, also known as network alignment, aims at recovering the latent vertex correspondence between two unlabeled, edge-correlated weighted graphs. To tackle this task, we propose a spectral method, GRAph Matching by Pairwise eigen-Alignments (GRAMPA), which first constructs a similarity matrix as a weighted sum of outer products between all pairs of eigenvectors of the two graphs, and then outputs a matching by a simple rounding procedure. For a universality class of correlated Wigner models, GRAMPA achieves exact recovery of the latent matching between two graphs with edge correlation $1 - 1/\mathrm{polylog}(n)$ and average degree at least $\mathrm{polylog}(n)$. This matches the state-of-the-art guarantees for polynomial-time algorithms established for correlated Erd\H{o}s-R\'{e}nyi graphs, and significantly improves over existing spectral methods. The superiority of GRAMPA is also demonstrated on a variety of synthetic and real datasets, in terms of both statistical accuracy and computational efficiency.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 12:14 
 3:20