14/09/2020

Maximum Margin Separations in Finite Closure Systems

Florian Seiffarth, Tamas Horvath, Stefan Wrobel

Keywords: closure systems, maximum margin separations, monotone linkages, binary classification

Abstract: Monotone linkage functions provide a measure for proximities between elements and subsets of a ground set. Combining this notion with Vapnik’s idea of support vector machines, we extend the concepts of maximal closed set and half-space separation in finite closure systems to those with maximum margin. In particular, we define the notion of margin for finite closure systems by means of monotone linkage functions and give a greedy algorithm computing a maximum margin closed set separation for two sets efficiently. The output closed sets are maximum margin half-spaces, i.e., form a partitioning of the ground set if the closure system is Kakutani. We have empirically evaluated our approach on different synthetic datasets. In addition to binary classification of finite subsets of the Euclidean space, we considered also the problem of vertex classification in graphs. Our experimental results provide clear evidence that maximal closed set separation with maximum margin results in a much better predictive performance than that with arbitrary maximal closed sets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers