18/07/2021

Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks

Jiaojiao Fan, Amirhossein Taghvaei, Yongxin Chen

Keywords: Algorithms, Optimal Transport

Abstract: Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions, utilizing the geometry induced by optimal transport. In this work, we present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at high-dimensional applications in machine learning. Our proposed algorithm is based on the Kantorovich dual formulation of the Wasserstein-2 distance as well as a recent neural network architecture, input convex neural network, that is known to parametrize convex functions. The distinguishing features of our method are: i) it only requires samples from the marginal distributions; ii) unlike the existing approaches, it represents the Barycenter with a generative model and can thus generate infinite samples from the barycenter without querying the marginal distributions; iii) it works similar to Generative Adversarial Model in one marginal case. We demonstratethe efficacy of our algorithm by comparing it with the state-of-art methods in multiple experiments.

 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers