08/07/2020

Contraction: a Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems

Shuai Shao and Yuxin Sun

Keywords: 2-Spin system, Correlation decay, Zero-freeness, Phase transition, Contraction

Abstract: We study complex zeros of the partition function of 2-spin systems, viewed as a multivariate polynomial in terms of the edge interaction parameters and the uniform external field. We obtain new zero-free regions in which all these parameters are complex-valued. Crucially based on the zero-freeness, we are able to extend the existence of correlation decay to these complex regions from real parameters. As a consequence, we obtain an FPTAS for computing the partition function of 2-spin systems on graphs of bounded degree for these parameter settings. We introduce the contraction property as a unified sufficient condition to devise FPTAS via either Weitz’s algorithm or Barvinok’s algorithm. Our main technical contribution is a very simple but general approach to extend any real parameter of which the 2-spin system exhibits correlation decay to its complex neighborhood where the partition function is zero-free and correlation decay still exists. This result formally establishes the inherent connection between two distinct notions of phase transition for 2-spin systems: the existence of correlation decay and the zero-freeness of the partition function via a unified perspective, contraction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers