18/07/2021

ConvexVST: A Convex Optimization Approach to Variance-stabilizing Transformation

Mengfan Wang, Boyu Lyu, Guoqiang Yu

Keywords: Optimization, Convex Optimization

Abstract: The variance-stabilizing transformation (VST) problem is to transform heteroscedastic data to homoscedastic data so that they are more tractable for subsequent analysis. However, most of the existing approaches focus on finding an analytical solution for a certain parametric distribution, which severely limits the applications, because simple distributions cannot faithfully describe the real data while more complicated distributions cannot be analytically solved. In this paper, we converted the VST problem into a convex optimization problem, which can always be efficiently solved, identified the specific structure of the convex problem, which further improved the efficiency of the proposed algorithm, and showed that any finite discrete distributions and the discretized version of any continuous distributions from real data can be variance-stabilized in an easy and nonparametric way. We demonstrated the new approach on bioimaging data and achieved superior performance compared to peer algorithms in terms of not only the variance homoscedasticity but also the impact on subsequent analysis such as denoising. Source codes are available at https://github.com/yu-lab-vt/ConvexVST.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers