13/04/2021

Transforming gaussian processes with normalizing flows

Juan Maroñas, Oliver Hamelijnck, Jeremias Knoblauch, Theodoros Damoulas

Keywords:

Abstract: Gaussian Processes (GP) can be used as flexible, non-parametric function priors. Inspired by the growing body of work on Normalizing Flows, we enlarge this class of priors through a parametric invertible transformation that can be made input-dependent. Doing so also allows us to encode interpretable prior knowledge (e.g., boundedness constraints). We derive a variational approximation to the resulting Bayesian inference problem, which is as fast as stochastic variational GP regression (Hensman et al., 2013; Dezfouli and Bonilla, 2015). This makes the model a computationally efficient alternative to other hierarchical extensions of GP priors (Lázaro-Gredilla,2012; Damianou and Lawrence,2013). The resulting algorithm’s computational and inferential performance is excellent, and we demonstrate this on a range of data sets. For example, even with only 5 inducing points and an input-dependent flow, our method is consistently competitive with a standard sparse GP fitted using 100 inducing points.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers