26/04/2020

Understanding l4-based Dictionary Learning: Interpretation, Stability, and Robustness

Yuexiang Zhai, Hermish Mehta, Zhengyuan Zhou, Yi Ma

Keywords: L4-norm Maximization, Robust Dictionary Learning

Abstract: Recently, the $\ell^4$-norm maximization has been proposed to solve the sparse dictionary learning (SDL) problem. The simple MSP (matching, stretching, and projection) algorithm proposed by \cite{zhai2019a} has proved surprisingly efficient and effective. This paper aims to better understand this algorithm from its strong geometric and statistical connections with the classic PCA and ICA, as well as their associated fixed-point style algorithms. Such connections provide a unified way of viewing problems that pursue {\em principal}, {\em independent}, or {\em sparse} components of high-dimensional data. Our studies reveal additional good properties of $\ell^4$-maximization: not only is the MSP algorithm for sparse coding insensitive to small noise, but it is also robust to outliers and resilient to sparse corruptions. We provide statistical justification for such inherently nice properties. To corroborate the theoretical analysis, we also provide extensive and compelling experimental evidence with both synthetic data and real images.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers