02/02/2021

Automated Clustering of High-dimensional Data with a Feature Weighted Mean Shift Algorithm

Saptarshi Chakraborty, Debolina Paul, Swagatam Das

Keywords:

Abstract: Mean shift is a simple interactive procedure that gradually shifts data points towards the mode which denotes the highest density of data points in the region. Mean shift algorithms have been effectively used for data denoising, mode seeking, and finding the number of clusters in a dataset in an automated fashion. However, the merits of mean shift quickly fade away as the data dimensions increase and only a handful of features contain useful information about the cluster structure of the data. We propose a simple yet elegant feature-weighted variant of mean shift to efficiently learn the feature importance and thus, extending the merits of mean shift to high-dimensional data. The resulting algorithm not only outperforms the conventional mean shift clustering procedure but also preserves its computational simplicity. In addition, the proposed method comes with rigorous theoretical convergence guarantees and a convergence rate of at least a cubic order. The efficacy of our proposal is thoroughly assessed through experimental comparison against baseline and state-of-the-art clustering methods on synthetic as well as real-world datasets.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948167
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers