15/06/2020

Learning fast and precise numerical analysis

Jingxuan He, Gagandeep Singh, Markus Püschel, Martin Vechev

Keywords: Abstract interpretation, Performance optimization, Machine learning, Numerical domains

Abstract: Numerical abstract domains are a key component of modern static analyzers. Despite recent advances, precise analysis with highly expressive domains remains too costly for many real-world programs. To address this challenge, we introduce a new data-driven method, called LAIT, that produces a faster and more scalable numerical analysis without significant loss of precision. Our approach is based on the key insight that sequences of abstract elements produced by the analyzer contain redundancy which can be exploited to increase performance without compromising precision significantly. Concretely, we present an iterative learning algorithm that learns a neural policy that identifies and removes redundant constraints at various points in the sequence. We believe that our method is generic and can be applied to various numerical domains. We instantiate LAIT for the widely used Polyhedra and Octagon domains. Our evaluation of LAIT on a range of real-world applications with both domains shows that while the approach is designed to be generic, it is orders of magnitude faster on the most costly benchmarks than a state-of-the-art numerical library while maintaining close-to-original analysis precision. Further, LAIT outperforms hand-crafted heuristics and a domain-specific learning approach in terms of both precision and speed.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at PLDI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers