02/02/2021

Frugal Optimization for Cost-related Hyperparameters

Qingyun Wu, Chi Wang, Silu Huang

Keywords:

Abstract: The increasing demand for democratizing machine learning algorithms calls for hyperparameter optimization (HPO) solutions at low cost. Many machine learning algorithms have hyperparameters which can cause a large variation in the training cost. But this effect is largely ignored in existing HPO methods, which are incapable to properly control cost during the optimization process. To address this problem, we develop a new cost-frugal HPO solution. The core of our solution is a simple but new randomized direct-search method, for which we provide theoretical guarantees on the convergence rate and the total cost incurred to achieve convergence. We provide strong empirical results in comparison with state-of-the-art HPO methods on large AutoML benchmarks.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949301
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers