04/08/2021

Random Graph Matching with Improved Noise Robustness

Cheng Mao, Mark Rudelson, Konstantin Tikhomirov

Keywords:

Abstract: Graph matching, also known as network alignment, refers to finding a bijection between the vertex sets of two given graphs so as to maximally align their edges. This fundamental computational problem arises frequently in multiple fields such as computer vision and biology. Recently, there has been a plethora of work studying efficient algorithms for graph matching under probabilistic models. In this work, we propose a new algorithm for graph matching: Our algorithm associates each vertex with a signature vector using a multistage procedure and then matches a pair of vertices from the two graphs if their signature vectors are close to each other. We show that, for two Erd\H{o}s--R\'enyi graphs with edge correlation $1-\alpha$, our algorithm recovers the underlying matching exactly with high probability when $\alpha \le 1 / (\log \log n)^C$, where $n$ is the number of vertices in each graph and $C$ denotes a positive universal constant. This improves the condition $\alpha \le 1 / (\log n)^C$ achieved in previous work.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers