08/07/2020

Counting homomorphisms in plain exponential time

A.Bulatov, A. Dadsetan

Keywords: graph homomorphisms, plain exponential time, clique width

Abstract: In the counting Graph Homomorphism problem (#GraphHom) the question is: Given graphs G,H, find the number of homomorphisms from G to H. This problem is generally #P-complete, moreover, Cygan et al. proved that unless the Exponential Time Hypothesis fails there is no algorithm that solves this problem in time O(|V(H)|^o(|V(G)|)). This, however, does not rule out the possibility that faster algorithms exist for restricted problems of this kind. Wahlström proved that #GraphHom can be solved in plain exponential time, that is, in time O((2k+1)^(|V(G)|+|V(H)|) poly(|V(H)|,|V(G)|)) provided H has clique width k. We generalize this result to a larger class of graphs, and also identify several other graph classes that admit a plain exponential algorithm for #GraphHom.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers