06/12/2021

Memory-Efficient Approximation Algorithms for Max-k-Cut and Correlation Clustering

Nimita Shinde, Vishnu Narayanan, James Saunderson

Keywords: optimization, graph learning, clustering

Abstract: Max-k-Cut and correlation clustering are fundamental graph partitioning problems. For a graph $G=(V,E)$ with $n$ vertices, the methods with the best approximation guarantees for Max-k-Cut and the Max-Agree variant of correlation clustering involve solving SDPs with $\mathcal{O}(n^2)$ constraints and variables. Large-scale instances of SDPs, thus, present a memory bottleneck. In this paper, we develop simple polynomial-time Gaussian sampling-based algorithms for these two problems that use $\mathcal{O}(n+|E|)$ memory and nearly achieve the best existing approximation guarantees. For dense graphs arriving in a stream, we eliminate the dependence on $|E|$ in the storage complexity at the cost of a slightly worse approximation ratio by combining our approach with sparsification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers