19/08/2021

A New Upper Bound Based on Vertex Partitioning for the Maximum K-plex Problem

Hua Jiang, Dongming Zhu, Zhichao Xie, Shaowen Yao, Zhang-Hua Fu

Keywords: Heuristic Search and Game Playing, Combinatorial Search and Optimisation, Heuristic Search, Mining Graphs, Semi Structured Data, Complex Data

Abstract: Given an undirected graph, the Maximum k-plex Problem (MKP) is to find a largest induced subgraph in which each vertex has at most k−1 non-adjacent vertices. The problem arises in social network analysis and has found applications in many important areas employing graph-based data mining. Existing exact algorithms usually implement a branch-and-bound approach that requires a tight upper bound to reduce the search space. In this paper, we propose a new upper bound for MKP, which is a partitioning of the candidate vertex set with respect to the constructing solution. We implement a new branch-and-bound algorithm that employs the upper bound to reduce the number of branches. Experimental results show that the upper bound is very effective in reducing the search space. The new algorithm outperforms the state-of-the-art algorithms significantly on real-world massive graphs, DIMACS graphs and random graphs.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers