06/12/2020

Unsupervised Joint k-node Graph Representations with Compositional Energy-Based Models

Leonardo Cotta, Carlos H. C. Teixeira, Ananthram Swami, Bruno Ribeiro

Keywords:

Abstract: Existing Graph Neural Network (GNN) methods that learn *inductive unsupervised* graph representations focus on learning node and edge representations by predicting observed edges in the graph. Although such approaches have shown advances in downstream node classification tasks, they are ineffective in jointly representing larger k-node sets, k{>}2. We propose MHM-GNN, an inductive unsupervised graph representation approach that combines joint k-node representations with energy-based models (hypergraph Markov networks) and GNNs. To address the intractability of the loss that arises from this combination, we endow our optimization with a loss upper bound using a finite-sample unbiased Markov Chain Monte Carlo estimator. Our experiments show that the unsupervised joint k-node representations of MHM-GNN produce better unsupervised representations than existing approaches from the literature.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers