26/08/2020

Permutation Invariant Graph Generation via Score-Based Generative Modeling

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon

Keywords:

Abstract: Learning generative models for graph-structured data is challenging because graphs are discrete, combinatorial, and the underlying data distribution is invariant to the ordering of nodes. However, most of the existing generative models for graphs are not invariant to the chosen ordering, which might lead to an undesirable bias in the learned distribution. To address this difficulty, we propose a permutation invariant approach to modeling graphs, using the recent framework of score-based generative modeling. In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph (a.k.a., the score function). This permutation equivariant model of gradients implicitly defines a permutation invariant distribution for graphs. We train this graph neural network with score matching and sample from it with annealed Langevin dynamics. In our experiments, we first demonstrate the capacity of this new architecture in learning discrete graph algorithms. For graph generation, we find that our learning approach achieves better or comparable results to existing models on benchmark datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers