06/12/2021

On the Power of Edge Independent Graph Models

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, Charalampos Tsourakakis

Keywords: deep learning, generative model, graph learning

Abstract: Why do many modern neural-network-based graph generative models fail to reproduce typical real-world network characteristics, such as high triangle density? In this work we study the limitations of $edge\ independent\ random\ graph\ models$, in which each edge is added to the graph independently with some probability. Such models include both the classic Erdos-Renyi and stochastic block models, as well as modern generative models such as NetGAN, variational graph autoencoders, and CELL. We prove that subject to a $bounded\ overlap$ condition, which ensures that the model does not simply memorize a single graph, edge independent models are inherently limited in their ability to generate graphs with high triangle and other subgraph densities. Notably, such high densities are known to appear in real-world social networks and other graphs. We complement our negative results with a simple generative model that balances overlap and accuracy, performing comparably to more complex models in reconstructing many graph statistics.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers