26/04/2020

Hyper-SAGNN: a self-attention based graph neural network for hypergraphs

Ruochi Zhang, Yuesong Zou, Jian Ma

Keywords: graph neural network, hypergraph, representation learning

Abstract: Graph representation learning for hypergraphs can be utilized to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. We believe that Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers