06/12/2021

Reinforcement Learning Enhanced Explainer for Graph Neural Networks

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, Dongsheng Li

Keywords: deep learning, optimization, reinforcement learning and planning, machine learning, graph learning, interpretability

Abstract: Graph neural networks (GNNs) have recently emerged as revolutionary technologies for machine learning tasks on graphs. In GNNs, the graph structure is generally incorporated with node representation via the message passing scheme, making the explanation much more challenging. Given a trained GNN model, a GNN explainer aims to identify a most influential subgraph to interpret the prediction of an instance (e.g., a node or a graph), which is essentially a combinatorial optimization problem over graph. The existing works solve this problem by continuous relaxation or search-based heuristics. But they suffer from key issues such as violation of message passing and hand-crafted heuristics, leading to inferior interpretability. To address these issues, we propose a RL-enhanced GNN explainer, RG-Explainer, which consists of three main components: starting point selection, iterative graph generation and stopping criteria learning. RG-Explainer could construct a connected explanatory subgraph by sequentially adding nodes from the boundary of the current generated graph, which is consistent with the message passing scheme. Further, we design an effective seed locator to select the starting point, and learn stopping criteria to generate superior explanations. Extensive experiments on both synthetic and real datasets show that RG-Explainer outperforms state-of-the-art GNN explainers. Moreover, RG-Explainer can be applied in the inductive setting, demonstrating its better generalization ability.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers