02/02/2021

Why Do Attributes Propagate in Graph Convolutional Neural Networks?

Liang Yang, Chuan Wang, Junhua Gu, Xiaochun Cao, Bingxin Niu

Keywords:

Abstract: Many efforts have been paid to enhance Graph Convolutional Network from the perspective of propagation under the philosophy that ``Propagation is the essence of the GCNNs". Unfortunately, its adverse effect is over-smoothing, which makes the performance dramatically drop. To prevent the over-smoothing, many variants are presented. However, the perspective of propagation can't provide an intuitive and unified interpretation to their effect on prevent over-smoothing. In this paper, we aim at providing a novel explanation to the question of "Why do attributes propagate in GCNNs?''. which not only gives the essence of the oversmoothing, but also illustrates why the GCN extensions, including multi-scale GCN and GCN with initial residual, can improve the performance. To this end, an intuitive Graph Representation Learning (GRL) framework is presented. GRL simply constrains the node representation similar with the original attribute, and encourages the connected nodes possess similar representations (pairwise constraint). Based on the proposed GRL, exiting GCN and its extensions can be proved as different numerical optimization algorithms, such as gradient descent, of our proposed GRL framework. Inspired by the superiority of conjugate gradient descent compared to common gradient descent, a novel Graph Conjugate Convolutional (GCC) network is presented to approximate the solution to GRL with fast convergence. Specifically, GCC adopts the obtained information of the last layer, which can be represented as the difference between the input and output of the last layer, as the input to the next layer. Extensive experiments demonstrate the superior performance of GCC.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947747
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers