02/02/2021

Rethinking Graph Regularization for Graph Neural Networks

Han Yang, Kaili Ma, James Cheng

Keywords:

Abstract: The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model f(X). However, with the recent popularity of graph neural networks (GNNs), directly encoding graph structure A into a model, i.e., f(A, X), has become the more common approach. While we show that graph Laplacian regularization brings little-to-no benefit to existing GNNs, and propose a simple but non-trivial variant of graph Laplacian regularization, called Propagation-regularization (P-reg), to boost the performance of existing GNN models. We provide formal analyses to show that P-reg not only infuses extra information (that is not captured by the traditional graph Laplacian regularization) into GNNs, but also has the capacity equivalent to an infinite-depth graph convolutional network. We demonstrate that P-reg can effectively boost the performance of existing GNN models on both node-level and graph-level tasks across many different datasets.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949294
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers